Sting Jet: the poisonous (and windy) tail of some of the most intense UK storms


Figure 1: Windstorm Tini (12 Feb 2014) passes over the British Isles bringing extreme winds. A Sting Jet has been identified in the storm. Image courtesy of NASA Earth Observatory

It was the morning of 16th October when South East England got battered by the Great Storm of 1987. Extreme winds occurred, with gusts of 70 knots or more recorded continually for three or four consecutive hours and maximum gusts up to 100 knots. The damage was huge across the country with 15 million trees blown down and 18 fatalities.

Figure 2: Surface wind gusts in the Great Storm of 1987. Image courtesy of UK Met Office.

The forecast issued on the evening of 15th October failed to identify the incoming hazard but forecasters were not to blame as the strongest winds were actually due to a phenomenon that had yet to be discovered at the time: the Sting Jet. A new topic of weather-related research had started: what was the cause of the exceptionally strong winds in the Great Storm?

It was in Reading at the beginning of 21st century that scientists came up with the first formal description of those winds, using observations and model simulations. Following the intuitions of Norwegian forecasters they used the term Sting Jet, the ‘sting at the end of the tail’. Using some imagination we can see the resemblance of the bent-back cloud head with a scorpion’s tail: strong winds coming out from its tip and descending towards the surface can then be seen as the poisonous sting at the end of the tail.

Figure 3: Conceptual model of a sting-jet extratropical cyclone, from Clark et al, 2005. As the cloud head bends back and the cold front moves ahead we can see the Sting Jet exiting from the cloud tip and descending into the opening frontal fracture.  WJ: Warm conveyor belt. CJ: Cold conveyor belt. SJ: Sting jet.

In the last decade sting-jet research progressed steadily with observational, modelling and climatological studies confirming that the strong winds can occur relatively often, that they form in intense extratropical cyclones with a particular shape and are caused by an additional airstream that is neither related to the Cold nor to the Warm Conveyor Belt. The key questions are currently focused on the dynamics of Sting Jets: how do they form and accelerate?

Works recently published (and others about to come out, stay tuned!) claim that although the Sting Jet occurs in an area in which fairly strong winds would already be expected given the morphology of the storm, a further mechanism of acceleration is needed to take into account its full strength. In fact, it is the onset of mesoscale instabilities and the occurrence of evaporative cooling on the airstream that enhances its descent and acceleration, generating a focused intense jet (see references for more details). It is thus necessary a synergy between the general dynamics of the storm and the local processes in the cloud head in order to produce what we call the Sting Jet .

plot_3D_sj ccb_short
Figure 4: Sting Jet (green) and Cold Conveyor Belt (blue) in the simulations of Windstorm Tini. The animation shows how the onset of the strongest winds is related to the descent of the Sting Jet. For further details on this animation and on the analysis of Windstorm Tini see here.


Browning, K. A. (2004), The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Q.J.R. Meteorol. Soc., 130: 375–399. doi:10.1256/qj.02.143

Clark, P. A., K. A. Browning, and C. Wang (2005), The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Q.J.R. Meteorol. Soc., 131: 2263–2292. doi:10.1256/qj.04.36

Martínez-Alvarado, O., L.H. Baker, S.L. Gray, J. Methven, and R.S. Plant (2014), Distinguishing the Cold Conveyor Belt and Sting Jet Airstreams in an Intense Extratropical Cyclone. Mon. Wea. Rev., 142, 2571–2595, doi: 10.1175/MWR-D-13-00348.1.

Hart, N.G., S.L. Gray, and P.A. Clark, 0: Sting-jet windstorms over the North Atlantic: Climatology and contribution to extreme wind risk. J. Climate, 0, doi: 10.1175/JCLI-D-16-0791.1.

Volonté, A., P.A. Clark, S.L. Gray. The role of Mesoscale Instabilities in the Sting-Jet dynamics in Windstorm Tini. Poster presented at European Geosciences Union – General Assembly 2017, Dynamical Meteorology (General session)

From foehn to intense rainfall: the importance of Alps in influencing the regional weather


Figure 1: View from Monte Lema (Italy-Switzerland) looking West. The Lake Maggiore region and the southern Alpine foothills are visible in the foreground whereas Monte Rosa and the Pennine Alps behind them are partially hidden by a characteristic foehn wall.  (A. Volonté, 4 January 2017)

The interaction between atmospheric flow and topography is at the origin of various important weather phenomena, as we have already seen in Carly Wright’s blog post. When a mountain range is particularly high and extended it can even block or deflect weather systems, as it happens with the Alps. For example, in Figure 1 we can see the main Alpine range with its over-4000m-high peaks blocking a cold front coming from the north. The main ridge acts as a wall, enhancing condensation and precipitation processes on the upstream side (stau condition) and leaving clear skies on the downstream lee side, where dry and mild katabatic foehn winds flow. The contrast is striking between sunny weather on Lake Maggiore and snowy conditions over Monte Rosa, just a few miles apart. The same phenomenon is shown in Figure 2 with a satellite image that highlights how a cold front coming from northwest gets blocked by the Alpine barrier. A person enjoying the sunny day in the southern side of the Alps, if unaware of this mechanism, would be very surprised  to know that the current weather is so different on the other side of the range.

Figure 2: Satellite image (MODIS-NASA) over the Alps and Po Valley on 22 October 2014
Figure 3: same as Figure 1 but on 13 December 2016

A comparison with Figure 3 helps to notice that in Figure 2 the shape of the cloud band closely mirrors the mountain range. As an additional remark,  this comparison shows that foehn bring clear skies even in the Po Valley, having blown away the typical mist/fog occurring in the region in Autumn and Winter months in high pressure regimes. The  stau/foehn dynamics is actually very fascinating, and you can read more about it in Elvidge and Renfrew (2015 ) and in Miltenberger et al. (2016), among others. Unfortunately, the interaction of weather systems with the Alps can often trigger very damaging phenomena, like heavy and long-lasting precipitation on one side of the slope, and this is what the rest of this post will be focused on. In fact, the most recent event of this kind just happened at the end of November, with intense and long-lasting rain affecting the southern slope of the Alps  and causing floods particularly in the Piedmont region, in northwestern Italy ( Figure 4).

Figure 4: River Tanaro flooding in the town of Garessio, 24 November 2016 (Piedmont, Italy). Source:
Figure 5: rainfall accumulated between 21 and 26 November 2016 in the Piedmont region. Source: Regional Agency for the protection of the Environment – Piedmont

Figure 5 shows that the accumulated rainfall in the event goes over 300 mm in a large band that follows the shape of the southern Alpine slope in the region (see map of Piedmont, from Google Maps), reaching even 600 mm in a few places. This situation is the result of moist southerly flow being blocked by the Alps and thus causing ascent and consequent precipitation to persist on the same areas for up to five days. It is quite common to see quasi-stationary troughs enter the Mediterranean region during Autumn months causing strong and long-lasting moist flows to move towards the Alps. Hence, it is crucial to understand  where the heaviest precipitation will occur. In other words, will it rain the most on top of the ridge or on the upstream plain? What processes are controlling the location of heavy precipitation with respect to the slope?

The study published by Davolio et al. (2016), available here and originated from my master degree’s thesis, tackles this issue focusing on northeastern Italy. In fact, the analysis includes three case studies in which heavy and long-lasting rain affected the eastern Alps and other three case studies in which intense rainfall was mainly located on the upstream plain. Although all the events showed common large-scale patterns and similar mesoscale settings, characterised by moist southerly low-level flow interacting with the Alps, the rainfall distribution turned out to be very dissimilar. The study highlights that the two precipitation regimes strongly differ in terms of interaction of the flow with the mountain barrier. When the flow is able to go over the Alps the heaviest rain occurs on top of the ridge. When the flow is instead blocked and deflected by the ridge (flow around), creating a so-called barrier wind, intense convection is triggered on the upstream plain (Figure 6) .

Figure 6: Schematic diagram of the key mechanisms governing the two different wind and precipitation patterns over NE Italy. (a) Blocked low-level flow, barrier wind, convergence and deep convection over the plain, upstream the orography. (b) Flow over conditions with orographic lifting and precipitation mainly over the Alps. From Davolio et al. (2016)
Figure 7: cross section going from the Adriatic Sea to the Alps in one of the events simulated. Equivalent potential temperature is shaded, thick black lines indicate clouds while arrows show tangent wind component. See Davolio et al. (2016)

The key mechanism that explains this different evolution is connected to the thermodynamic state of the impinging flow. In fact, when the southerly moist and warm air gets close to the Alpine barrier it is lifted above the colder air already present at the base of the orography. It can be said that the colder air behaves as a first effective mountain for the incoming flow. If this lifting process triggers convection, then the persistence of a blocked-flow condition is highly favoured (see Figure 7). On the contrary, if this initial lifting process does not trigger convection the intense moist flow will eventually be able to go over the ridge, where a more substantial ascent will take place, causing heavy rain on the ridge top. This study also looks at numerical parameters used in more idealised analyses (like in Miglietta and Rotunno (2009)), finding a good agreement with the theory.

To summarise, we can say that the Alpine range is able to significantly modify weather systems when interacting with them. Thus, an in-depth understanding of the processes taking place during the interaction, along with a coherent model is necessary to capture correctly the effects on the local weather, being either a rainfall enhancement, the occurrence of foehn winds or various other phenomena.


Davolio, S., Volonté A., Manzato A., Pucillo A., Cicogna A. and Ferrario M.E. (2016), Mechanisms producing different precipitation patterns over north-eastern Italy: insights from HyMeX-SOP1 and previous events. Q.J.R. Meteorol. Soc., 142 (Suppl 1): 188-205. doi:10.1002/qj.2731

Elvidge A. D., Renfrew, I. A. (2015). The causes of foehn warming in the lee of mountains. Bull. Am. Meteorol. Soc. 97: 455466, doi:10.1175/BAMS-D-14-00194.1.

Miglietta M. and Rotunno R., (2009) Numerical Simulations of Conditionally Unstable Flows over a Mountain Ridge. J. Atmos. Sci., 66, 1865–1885, doi: 10.1175/2009JAS2902.1. 

Miltenberger, A. K., Reynolds, S. and Sprenger, M. (2016), Revisiting the latent heating contribution to foehn warming: Lagrangian analysis of two foehn events over the Swiss Alps. Q.J.R. Meteorol. Soc., 142: 2194–2204. doi:10.1002/qj.2816