4th ICOS Summer School

Email: R.Braghiere@pgr.reading.ac.uk

The 4th ICOS Summer School on challenges in greenhouse gases measurements and modelling was held at Hyytiälä field station in Finland from 24th May to 2nd June, 2017. It was an amazing week of ecosystem fluxes and measurements, atmospheric composition with in situ and remote sensing measurements, global climate modelling and carbon cycle, atmospheric transport and chemistry, and data management and cloud (‘big data’) methods. We also spent some time in the extremely hot Finnish sauna followed by jumps into a very cold lake, and many highly enjoyable evenings by the fire with sunsets that seemed to never come.

sunset_Martijn Pallandt
Figure 1. Sunset in Hyytiälä, Finland at 22:49 local time. Credits: Martijn Pallandt

Our journey started in Helsinki, where a group of about 35 PhD students, with a number of postdocs and master students took a 3 hours coach trip to Hyytiälä.  The group was very diverse and international with people from different backgrounds; from plant physiologists to meteorologists. The school started with Prof. Dr. Martin Heimann  introducing us to the climate system and the global carbon cycle, and Dr. Alex Vermeulen highlighted the importance of good metadata practices and showed us more about ICOS research infrastructure. Dr. Christoph Gerbig joined us via Skype from Germany and talked about how atmospheric measurements methods with aircrafts (including how private air companies) can help scientists.

Hyytiala_main_tower_truls_Andersen_2
Figure 2. Hyytiälä flux tower site, Finland. Credits: Truls Andersen

On Saturday we visited the Hyytiälä flux tower site, as well as a peatland field station nearby, where we learned more about all the flux data they collect and the importance of peatlands globally. Peatlands store significant amounts of carbon that have been accumulating for millennia and they might have a strong response to climate change in the future. On Sunday, we were divided in two groups to collect data on temperature gradients from the lake to the Hyytiälä main flux tower, as well as on carbon fluxes with dark (respiration only) and transparent (photosynthesis + respiration) CO2 chambers.

chamber_measurements_renato
Figure 3: Dark chamber for CO2 measurements being used by a group of students in the Boreal forest. Credits: Renato Braghiere

On the following day it was time to play with some atmospheric modelling with Dr. Maarten Krol and Dr. Wouter Peters. We prepared presentations with our observation and modelling results and shared our findings and experiences with the new data sets.

The last two days have focused on learning how to measure ecosystem fluxes with Prof. Dr. Timo Vesala, and insights on COS measurements and applications with Dr. Kadmiel Maseyk. Timo also shared with us his passion for cinema with a brilliant talk entitled “From Vertigo to Blue Velvet: Connotations between Movies and Climate change” and we watched a really nice Finnish movie “The Happiest Day in the Life of Olli Mäki“.

4th_icos_summer_school_group_photo
Figure 4: 4th ICOS Summer School on Challenges in greenhouse gases measurements and modelling group photo. Credits: Wouter Peters

Lastly, it was a fantastic week where we were introduced to several topics and methods related to the global carbon budget and how it might impact the future climate. No doubt all information gained in this Summer School will be highly valuable for our careers and how we do science. A massive ‘cheers’ to Olli Peltola, Alex Vermeulen, Martin Heimann, Christoph Gerbig, Greet Maenhout, Wouter Peters, Maarten Krol, Anders Lindroth , Kadmiel Maseyk, Timo Vesala, and all the staff at the Hyytiälä field station.

This post only scratches the surface of all of the incredible material we were able to cover in the 4th ICOS Summer School, not to mention the amazing group of scientists that we met in Finland, who I really look forward to keeping in touch over the course of the years!

 

The impact of vegetation structure on global photosynthesis

Email: R.Braghiere@pgr.reading.ac.uk

Twitter: @renatobraghiere

The partitioning of shortwave radiation by vegetation into absorbed, reflected, and transmitted terms is important for most biogeophysical processes including photosynthesis. The most commonly used radiative transfer scheme in climate models does not explicitly account for vegetation architectural effects on shortwave radiation partitioning, and even though detailed 3D radiative transfer schemes have been developed, they are often too computationally expensive and require a large number of parameters.

Using a simple parameterisation, we modified a 1D radiative transfer scheme to simulate the radiative balance consistently with 3D representations. Canopy structure is typically treated via a so called “clumping” factor which acts to reduce the effective leaf area index (LAI) and hence fAPAR (fraction of absorbed photosynthetically radiation, 400-700 nm). Consequently from a production efficiency standpoint it seems intuitive that any consideration of clumping can only lead to reduce GPP (Gross Primary Productivity).  We show, to the contrary, that the dominant effect of clumping in more complex models should be to increase photosynthesis on global scales.

difference_gpp_clump_default_jules
Figure 1. Difference in GPP estimated by JULES including clumping and default JULES GL4.0. Global difference is 5.5 PgC.

The Joint UK Land Environment Simulator (JULES) has recently been modified to include clumping information on a per-plant functional type (PFT) basis (Williams et al., 2017). Here we further modify JULES to read in clumping for each PFT in each grid cell independently. We used a global clumping map derived from MODIS data (He et al., 2012) and ran JULES 4.6 for the year 2008 both with and without clumping using the GL4.0 configuration forced with the WATCH-Forcing-Data-ERA-Interim data set (Weedon et al., 2014). We compare our results against the MTE (Model Tree Ensemble) GPP global data set (Beer et al., 2010).

erro_bar_boxes_v2
Figure 2. Regionally averaged GPP compared to the MTE GPP data set. In all areas except Africa there is an overall improvement.

Fig. 1 shows an almost ubiquitous increase in GPP globally when clumping is included in JULES. In general this improves agreement against the MTE data set (Fig. 2). Spatially the only significant areas where the performance is degraded are some tropical grasslands and savannas (not shown). This is likely due to other model problems, in particular the limited number of PFTs used to represent all vegetation globally. The explanation for the increase in GPP and its spatial pattern is shown in Fig 3. JULES uses a multi-layered canopy scheme coupled to the Farquhar photosynthesis scheme (Farquhar et al., 1980). Changing fAPAR (by including clumping in this case) has largest impacts where GPP is light limited, and this is especially true in tropical forests.

gpp_vertical_anomaly_zonal_mean_Opt5_gridbox
Figure 3. Difference in longitudinally averaged GPP as a function of depth in the canopy. Clumping allows greater light penetration to lower canopy layers in which photosynthesis is light limited.

 

References

Beer, C. et al. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science329(5993), pp.834-838.

Farquhar, G.D. et al. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78–90.

He, L. et al. 2012. Global clumping index map derived from the MODIS BRDF product. Remote Sensing of Environment119, pp.118-130.

Weedon, G. P. et al. 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50, 7505–7514.

Williams, K. et al. 2017. Evaluation of JULES-crop performance against site observations of irrigated maize from Mead, Nebraska. Geoscientific Model Development10(3), pp.1291-1320.