4th ICOS Summer School

Email: R.Braghiere@pgr.reading.ac.uk

The 4th ICOS Summer School on challenges in greenhouse gases measurements and modelling was held at Hyytiälä field station in Finland from 24th May to 2nd June, 2017. It was an amazing week of ecosystem fluxes and measurements, atmospheric composition with in situ and remote sensing measurements, global climate modelling and carbon cycle, atmospheric transport and chemistry, and data management and cloud (‘big data’) methods. We also spent some time in the extremely hot Finnish sauna followed by jumps into a very cold lake, and many highly enjoyable evenings by the fire with sunsets that seemed to never come.

sunset_Martijn Pallandt
Figure 1. Sunset in Hyytiälä, Finland at 22:49 local time. Credits: Martijn Pallandt

Our journey started in Helsinki, where a group of about 35 PhD students, with a number of postdocs and master students took a 3 hours coach trip to Hyytiälä.  The group was very diverse and international with people from different backgrounds; from plant physiologists to meteorologists. The school started with Prof. Dr. Martin Heimann  introducing us to the climate system and the global carbon cycle, and Dr. Alex Vermeulen highlighted the importance of good metadata practices and showed us more about ICOS research infrastructure. Dr. Christoph Gerbig joined us via Skype from Germany and talked about how atmospheric measurements methods with aircrafts (including how private air companies) can help scientists.

Hyytiala_main_tower_truls_Andersen_2
Figure 2. Hyytiälä flux tower site, Finland. Credits: Truls Andersen

On Saturday we visited the Hyytiälä flux tower site, as well as a peatland field station nearby, where we learned more about all the flux data they collect and the importance of peatlands globally. Peatlands store significant amounts of carbon that have been accumulating for millennia and they might have a strong response to climate change in the future. On Sunday, we were divided in two groups to collect data on temperature gradients from the lake to the Hyytiälä main flux tower, as well as on carbon fluxes with dark (respiration only) and transparent (photosynthesis + respiration) CO2 chambers.

chamber_measurements_renato
Figure 3: Dark chamber for CO2 measurements being used by a group of students in the Boreal forest. Credits: Renato Braghiere

On the following day it was time to play with some atmospheric modelling with Dr. Maarten Krol and Dr. Wouter Peters. We prepared presentations with our observation and modelling results and shared our findings and experiences with the new data sets.

The last two days have focused on learning how to measure ecosystem fluxes with Prof. Dr. Timo Vesala, and insights on COS measurements and applications with Dr. Kadmiel Maseyk. Timo also shared with us his passion for cinema with a brilliant talk entitled “From Vertigo to Blue Velvet: Connotations between Movies and Climate change” and we watched a really nice Finnish movie “The Happiest Day in the Life of Olli Mäki“.

4th_icos_summer_school_group_photo
Figure 4: 4th ICOS Summer School on Challenges in greenhouse gases measurements and modelling group photo. Credits: Wouter Peters

Lastly, it was a fantastic week where we were introduced to several topics and methods related to the global carbon budget and how it might impact the future climate. No doubt all information gained in this Summer School will be highly valuable for our careers and how we do science. A massive ‘cheers’ to Olli Peltola, Alex Vermeulen, Martin Heimann, Christoph Gerbig, Greet Maenhout, Wouter Peters, Maarten Krol, Anders Lindroth , Kadmiel Maseyk, Timo Vesala, and all the staff at the Hyytiälä field station.

This post only scratches the surface of all of the incredible material we were able to cover in the 4th ICOS Summer School, not to mention the amazing group of scientists that we met in Finland, who I really look forward to keeping in touch over the course of the years!

 

Innovating for Sustainable Development

Email: Rachael.Byrom@pgr.reading.ac.uk

In 2016 the United Nations (UN) Sustainable Development Goals (SDGs) officially came into force to tackle key global challenges under a sustainable framework.

The SDGs comprise 17 global goals and 169 targets to be achieved across the next 15 years. As part of the ‘2030 Agenda’ for sustainable development, these goals aim to address a range of important global environmental, social and economic issues such as climate change, poverty, hunger and inequality. Adopted by leaders across the world, these goals are a ‘call for action’ to ensure that no one is left behind. However, the SDGs are not legally binding. The success of goals will rely solely on the efforts of individual countries to establish and implement a national framework for achieving sustainable development.

UN SDGs
The United Nation’s 17 Sustainable Development Goals

As part of the NERC funded ‘Innovating for Sustainable Development’ programme, students here in the Department of Meteorology were given the opportunity to explore and find solutions to key environmental challenges as outlined in the UN’s SDGs.

Run by the SCENARIO and SSCP doctoral training partnerships, the programme challenged students from a variety of disciplines and institutions to re-frame the SDGs from a multi-disciplinary perspective and to develop tangible, innovative solutions for sustainable development.

The programme began with an ‘Interdisciplinary Challenges Workshop’ where students participated in activities and exercises to review the importance of the SDGs and to consider their multi-disciplinary nature. Students were encouraged to think creatively and discuss issues related to each of the goals, such as: ‘Is this SDG achievable?’, ‘Are the goals contradictory?’ and ‘How could I apply my research to help achieve the SDGs?’

SDGs
Visual representations of SDG 5 and SDG 7

Following this, three ‘Case Study’ days explored a handful of the SDGs in greater detail, with representatives from industry, start-ups and NGOs explaining how they are working to achieve a particular SDG, their current challenges and possible opportunities for further innovation.

The first Case Study day focused on both SDG 7 – Affordable and Clean Energy and SDG 12 – Responsible Consumption and Production. For SDG 7, insightful talks were given by the Moving Energy Initiative on the issue of delivering energy solutions to millions of displaced people, and BBOXX, on their work to produce and distribute off-grid solar power systems to rural communities in places such as Kenya and Rwanda. In the afternoon, presentations given by Climate-KIC start up NER and Waitrose showcased the efforts currently being taken to reduce wasteful food production and packaging, while Forum for the Future emphasised the importance of addressing sustainable nutrition.

The second Case Study day focused on SDG 6 – Clean Water and Sanitation. Experts from WaterAid, De-Solenator, Bear Valley Ventures, UKWIR and the International Institute for Environmental Development outlined the importance of confronting global sanitation and water challenges in both developing and developed nations. Alarmingly, it was highlighted that an estimated 40% of the global population are affected by water scarcity and 2.4 billion people still lack access to basic sanitation services, with more than 80% of human activity wastewater discharged into rivers without going through any stage of pollution removal (UN, 2016).

Case study
Participants discussing ideas during the second Case Study day

The last Case Study day explored SDG 9 – Industry, Innovation and Infrastructure and SDG 11 – Sustainable Cities and Communities. A range of talks on building technologies, carbon neutral buildings and sustainable solar technologies were given, along with a presentation by OPDC on the UK’s largest regeneration project. The day finished off with an overview from the Greater London Authority about the London Infrastructure Map and their new approach to sustainable planning and development across the city.

The programme finished off with a second workshop. Here students teamed up to develop innovative business ideas aimed at solving the SDG challenges presented throughout the Case Study events. Business coaches and experts were on hand to offer advice to help the teams develop ideas that could become commercially viable.

On the 16th March the teams presented their business ideas at the ‘Meet the Cleantech Pioneers’ networking event at Imperial’s new Translation and Innovation Hub (I-HUB). An overview of the projects can be found here. This event, partnered with the Climate-KIC accelerator programme, provided an excellent platform for participants to showcase and discuss their ideas with a mix of investors, entrepreneurs, NGOs and academics all interested in achieving sustainable development.

I-HUB
The final showcase event at Imperial’s I-HUB

Overall the programme provided a great opportunity to examine the importance of the SDGs and to work closely with PhD students from a range of backgrounds. Fundamentally the process emphasised the point that, in order for the world to meet the 2030 Agenda, many sustainable development challenges still need to be better understood and many solutions still need to be provided – and here scientific research can play a key role. Furthermore, it was made clear that a high level of interdisciplinary thinking, research and innovation is needed to achieve sustainable development.

Institutes

References:

UN, 2016: Clean Water and Sanitation – Why it matters, United Nations, Accessed 05 March 2017. [Available online at http://www.un.org/sustainabledevelopment/wp-content/uploads/2016/08/6_Why-it-Matters_Sanitation_2p.pdf]

Mountains and the Atmospheric Circulation within Models

Email: a.vanniekerk@pgr.reading.ac.uk

Mountains come in many shapes and sizes and as a result their dynamic impact on the atmospheric circulation spans a continuous range of physical and temporal scales. For example, large-scale orographic features, such as the Himalayas and the Rockies, deflect the atmospheric flow and, as a result of the Earth’s rotation, generate waves downstream that can remain fixed in space for long periods of time. These are known as stationary waves (see Nigam and DeWeaver (2002) for overview). They have an impact not only on the regional hydro-climate but also on the location and strength of the mid-latitude westerlies. On smaller physical scales, orography can generate gravity waves that act to transport momentum from the surface to the upper parts of the atmosphere (see Teixeira 2014), playing a role in the mixing of chemical species within the stratosphere.

hims
Figure 1: The model resolved orography at different horizontal resolutions. From a low (climate model) resolution to a high (seasonal forecasting) resolution. Note how smooth the orography is at climate model resolution.

Figure 1 shows an example of the resolved orography at different horizontal resolutions over the Himalayas. The representation of orography within models is complicated by the fact that, unlike other parameterized processes, such as clouds and convection, that are typically totally unresolved by the model, its effects are partly resolved by the dynamics of the model and the rest is accounted for by parameterization schemes.However, many parameters within these schemes are not well constrained by observations, if at all. The World Meteorological Organisation (WMO) Working Group on Numerical Experimentation (WGNE) performed an inter-model comparison focusing on the treatment of unresolved drag processes within models (Zadra et al. 2013). They found that while modelling groups generally had the same total amount of drag from various different processes, their partitioning was vastly different, as a result of the uncertainty in their formulation.

Climate models with typically low horizontal resolutions, resolve less of the Earth’s orography and are therefore more dependent on parameterization schemes. They also have large model biases in their climatological circulations when compared with observations, as well as exhibiting a similarly large spread about these biases. What is more, their projected circulation response to climate change is highly uncertain. It is therefore worth investigating the processes that contribute towards the spread in their climatological circulations and circulation response to climate change. The representation of orographic processes seem vital for the accurate simulation of the atmospheric circulation and yet, as discussed above, we find that there is a lot of uncertainty in their treatment within models that may be contributing to model uncertainty. These uncertainties in the orographic treatment come from two main sources:

  1. Model Resolution: Models with different horizontal resolutions will have different resolved orography.
  2. Parameterization Formulation: Orographic drag parameterization formulation varies between models.

The issue of model resolution was investigated in our recent study, van Niekerk et al. (2016). We showed that, in the Met Office Unified Model (MetUM) at climate model resolutions, the decrease in parameterized orographic drag that occurs with increasing horizontal resolution was not balanced by an increase in resolved orographic drag. The inability of the model to maintain an equivalent total (resolved plus parameterized) orographic drag across resolutions resulted in an increase in systematic model biases at lower resolutions identifiable over short timescales. This shows not only that the modelled circulation is non-robust to changes in resolution but also that the parameterization scheme is not performing in the same way as the resolved orography. We have highlighted the impact of parameterized and resolved orographic drag on model fidelity and demonstrated that there is still a lot of uncertainty in the way we treat unresolved orography within models. This further motivates the need to constrain the theory and parameters within orographic drag parameterization schemes.

References

Nigam, S., and E. DeWeaver, 2002: Stationary Waves (Orographic and Thermally Forced). Academic Press, Elsevier Science, London, 2121–2137 pp., doi:10.1016/B978-0-12-382225-3. 00381-9.

Teixeira MAC, 2014: The physics of orographic gravity wave drag. Front. Phys. 2:43. doi:10.3389/fphy.2014.00043 http://journal.frontiersin.org/article/10.3389/fphy.2014.00043/full

Zadra, A., and Coauthors, 2013: WGNE Drag Project. URL:http://collaboration.cmc.ec.gc.ca/science/rpn/drag_project/

van Niekerk, A., T. G. Shepherd, S. B. Vosper, and S. Webster, 2016: Sensitivity of resolved and parametrized surface drag to changes in resolution and parametrization. Q. J. R. Meteorol. Soc., 142 (699), 2300–2313, doi:10.1002/qj.2821. 

 

Geoengineering – how could we detect its cooling effect?

Detecting sulphate aerosol geoengineering with different methods
Lo, Y. T. E. et al. Detecting sulphate aerosol geoengineering with different methods. Sci. Rep. 6, 39169; doi: 10.1038/srep39169 (2016).

Email: y.t.e.lo@pgr.reading.ac.uk

Sulphate aerosol injection (SAI) is one of the geoengineering proposals that aim to reduce future surface temperature rise in case ambitious carbon dioxide mitigation targets cannot be met.  Climate model simulations suggest that by injecting 5 teragrams (Tg) of sulphur dioxide gas (SO2) into the stratosphere every year, global surface cooling would be observed within a few years of implementation.  This injection rate is equivalent to 5 million tonnes of SOper year, or one Mount Pinatubo eruption every 4 years (large volcanic eruptions naturally inject SOinto the stratosphere; the Mount Pinatubo eruption in 1991 led to ~0.5 °C global surface cooling in the 2 years that followed (Self et al., 1993)).  However, temperature fluctuations occur naturally in the climate system too.  How could we detect the cooling signal of SAI amidst internal climate variability and temperature changes driven by other external forcings?

The answer to this is optimal fingerprinting (Allen and Stott, 2003), a technique which has been extensively used to detect and attribute climate warming to human activities.  Assuming a scenario (G4, Kravitz et al., 2011) in which 5 Tg yr-1 of SO2 is injected into the stratosphere on top of a mid-range warming scenario called RCP4.5 from 2020-2070, we first estimate the climate system’s internal variability and the temperature ‘fingerprints’ of the geoengineering aerosols and greenhouse gases separately, and then compare observations to these fingerprints using total least squares regression.  Since there are no real-world observations of geoengineering, we cross-compare simulations from different climate models in this research.  This gives us 44 comparisons in total, and the number of years that would be needed to robustly detect the cooling signal of SAI in global-mean near-surface air temperature is estimated for each of them.

Figure 1(a) shows the distribution of the estimated time horizon over which the SAI cooling signal would be detected at the 10% significance level in these 44 comparisons.  In 29 of them, the cooling signal would be detected during the first 10 years of SAI implementation.  This means we would not only be able to separate the cooling effect of SAI from the climate system’s internal variability and temperature changes driven by greenhouse gases, but we would also be able to achieve this early into SAI deployment.

eunice_blog_1_fig1
Figure 1: Distribution of the estimated detection horizons of the SAI fingerprint using (a) the conventional two-fingerprint detection method and (b) the new, non-stationary detection method.

The above results are tested by applying a variant of optimal fingerprinting to the same problem.  This new method assumes a non-stationary background climate that is mainly forced by greenhouse gases, and attempts to detect the cooling effect of SAI against the warming background using regression (Bürger and Cubasch, 2015).  Figure 1(b) shows the distribution of the detection horizons estimated by using the new method in the same 44 comparisons: 35 comparisons would require 10 years or fewer for the cooling signal to be robustly detected.  This shows a slight improvement from the results found with the conventional method, but the two distributions are very similar.

To conclude, we would be able to separate and thus, detect the cooling signal of sulphate aerosol geoengineering from internal climate variability and greenhouse gas driven warming in global-mean temperature within 10 years of SAI deployment in a future 5 Tg yr-1 SAI scenario.  This could be achieved with either the conventional optimal fingerprinting method or a new, non-stationary detection method, provided that the climate data are adequately filtered.  Research on the effects of different data filtering techniques on geoengineering detectability is not included in this blog post, please refer to the article cited at the top for more details.

This work has been funded by the University of Reading.  Support has also been provided by the UK Met Office.

Note: So how feasible is a 5 Tg yr-1 SO2 injection scenario?  Robock et al. (2009) estimated the cost of lofting 1 Tg yr-1 SO2 into the stratosphere with existing aircrafts to be several billion U.S. dollars per year. Scaling this to 5 Tg yr-1 is still not a lot compared to the gross world product. There are practical issues to be addressed even if existing aircrafts were to be used for SAI, but the deciding factor of whether to implement sulphate aerosol geoengineering or not would likely be its potential benefits and side effects, both on the climate system and the society. 

 

References

Self, Stephen, et al. “The atmospheric impact of the 1991 Mount Pinatubo eruption.” (1993).

Allen, M. R., and P. A. Stott. “Estimating signal amplitudes in optimal fingerprinting, Part I: Theory.” Climate Dynamics 21.5-6 (2003): 477-491.

Kravitz, Ben, et al. “The geoengineering model intercomparison project (GeoMIP).” Atmospheric Science Letters 12.2 (2011): 162-167.

Bürger, Gerd, and Ulrich Cubasch. “The detectability of climate engineering.” Journal of Geophysical Research: Atmospheres 120.22 (2015).

Robock, Alan, et al. “Benefits, risks, and costs of stratospheric geoengineering.” Geophysical Research Letters 36.19 (2009).

What is loss and damage from climate change?

Characterizing loss and damage from climate change
James et al., 2014. Nature Climate Change, 4, 938–939. doi:10.1038/nclimate2411

Email: h.r.young@pgr.reading.ac.uk

Under the United Nations Framework Convention on Climate Change (UNFCCC), countries negotiate how to address the impacts of anthropogenic climate change through mitigation and adaptation. Despite these efforts, climate-related events still cause huge impacts across the globe every year. Impacts can be particularly  devastating in developing countries and this is what the relatively new area of ‘loss and damage’ in the negotiations aims to address.

In 2013, the UNFCCC established the Warsaw International Mechanism (WIM) to “address loss and damage associated with impacts of climate change, including extremes events and slow onset events, in developing countries that are particularly vulnerable to the adverse effects of climate change” (UNFCCC, 2013). Two decades of negotiating went into forming this mechanism, since the first calls from small island developing states in the early 1990s to address the effects of sea level rise.

vanuatu2
Island states such as Vanuatu in the South Pacific have been requesting support for the impacts of sea level rise since the early 1990s. Source: Meredith James/Flickr/CC BY-NC-ND 2.0

The WIM states it will address the impacts of both extreme events (such as floods and heatwaves) and slow onset events (such as sea level rise). However, as yet, there is no official definition of what loss and damage will actually encompass. In our commentary in Nature Climate Change (James et al., 2014), we considered one aspect of defining loss and damage: whether loss and damage would need to be attributed to anthropogenic climate change. As the text of the WIM describes “loss and damage associated with the impacts of climate change” and the UNFCCC’s definition of climate change is that which is “attributed directly or indirectly to human activity” (UNFCCC, 1992), this could imply that there would need to be proof that impacts from events were caused by anthropogenic climate change.

If this were the case, impacts would first need to be attributed to particular events (e.g. the infrastructure damaged by a particular flood), and then the event would need to be attributed to anthropogenic climate change. For slow-onset events like sea level rise, the science attributing these to anthropogenic climate change is well-established. However for individual events it is much more challenging to say how climate change had an influence. Extreme event attribution can, for some types of events, estimate how anthropogenic climate change affected the probability of the particular event occurring. This generally relies on large ensembles of climate model simulations, which are necessary to estimate the probabilities of such rare events, and studies therefore rely on the ability of the models to represent the processes that produce the extreme event in question. Observations are also necessary to both to validate the model simulations and define the extreme event to be studied, which are not always available, particularly in developing countries. Up to now, studies attributing specific events have been carried out on an ad hoc basis in the aftermath of particularly extreme events, rather than more systematically. They have also mainly focussed on events in developed countries, rather than the developing countries the WIM aims to assist.

haiyan
Typhoon Haiyan caused devastation in November 2013 as the WIM was being negotiated. It was used as an example of loss and damage, but without any consideration of whether anthropogenic climate change played a role. Is this an important consideration? Source: DFID/Flickr/CC BY 2.0

While the attribution of events to anthropogenic climate change could be relevant to addressing loss and damage, it is controversial in negotiations. This is in part due to its perceived association with compensation claims. However we suggest that, somewhere along the line, the question of causality is likely to come up, to establish just what the loss and damage being addressed is. Attribution may or may not have a role to play here. What is key is that as event attribution science is continuing to develop, scientists and policymakers need to have opportunities for conversations about what information the science can provide and how this could be applied if it was deemed necessary for policy.

Since writing our commentary we have continued to research this science-policy interface. We have investigated what is understood about event attribution science by stakeholders associated with loss and damage negotiations and how they think it could be relevant (Parker et al., 2016). We have also investigated how policymakers and practitioners are defining ‘loss and damage’, as this still has no official definition and there are differing perspectives among those looking to address loss and damage. Our aim is that by better understanding this policy context, the science will be able to develop in ways that are most relevant to the needs of decision makers and, if deemed relevant, ultimately help to address loss and damage in vulnerable regions.

This work forms part of the ACE-Africa project, for more information see http://www.walker.ac.uk/projects/ace-africa-attributing-impacts-of-external-climate-drivers-on-extreme-weather-in-africa/ 

References

James, R., Otto, F., Parker, H., Boyd, E., Cornforth, R., Mitchell, D., & Allen, M. (2014). Characterizing loss and damage from climate change. Nature Climate Change, 4, 938-939, doi: 10.1038/nclimate2411.

Parker, H. R. , Boyd, E., Cornforth, R. J., James, R., Otto, F. E. L., & Allen, M. R. (2016). Stakeholder perceptions of event attribution in the loss and damage debate. Climate Policy, doi: 10.1080/14693062.2015.1124750.

UNFCCC (1992). Article 1: Definitions

UNFCCC (2013). Decision 2/CP.19: Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts FCCC/CP/2013/10/Add.1

Discovering COP22

Email: j.f.talib@pgr.reading.ac.uk

Over the past two weeks 25,000 delegates have been gathering in Marrakech to discuss mitigation and adaptation for climate change. On the 4th November 2016 the Paris Agreement came into force and as a result discussions during the conference debated its implementation. The Walker Institute and the Department of Meteorology (University of Reading), with the support of the NERC SCENARIO doctoral training partnership and an UNFCCC partnership, supported two PhD students to be official UN observers at COP22, and enabled remote participation with students back at Reading University. To find out more about our work with COP22 continue reading this blog post and check out:

Today (18/11/16) the UK government are set to announce that the United Kingdom has ratified the Paris Agreement. Yesterday, Boris Johnson (UK foreign secretary) signed the Paris Agreement after no objections were raised by the House of Commons or House of Lords. The United Kingdom in accordance with the Intended Nationally Determined Contributions (INDCs) of the European Union, are set to reduce greenhouse gas emissions by 40% by 2030 relative to 1990 emission levels. Today also marks the end of the 22nd Conference of the Parties (COP) for the United Nations Framework Convention on Climate Change and here are some quick summary points that PhD students took away from observing the process in Marrakech:

1) The significance of the Paris Agreement.

“Now that we have Paris, we need to take action immediately”

Teresa Anderson, ActionAid UK.

The Paris Agreement marks a change in the intentions during the COP process. Due to the success and ratification of the Paris Agreement more discussions can be based on the adaptation and mitigation against climate change, rather than negotiating global targets on climate change prevention. The Paris Agreement states that a global response is needed to respond to the threat of climate change and that global temperature rise should be kept well below 2°C and that efforts should be pursued to limit the global temperature rise to 1.5°C. COP22 Marrakech, began by stating that this is the “COP of Action”, and therefore the focus seen during side events, negotiations, dignitary speeches and press conferences was on the need for action.

“Countries have strongly supported the [Paris] Agreement because they realize their own national interest is best secured by pursuing the common good. Now we have to translate words into effective policies and actions.”

Mr Ban Ki-Moon, Secretary General of the United Nations.

paris-agreement-signing

2) A continued effort is needed to concentrate on the individual.

As SCENARIO PhD students we were challenged to understand the process that takes place during a UNFCCC conference. To do this we interviewed many conference delegates including policymakers, research organisations, industry experts, entrepreneurs, environmental consultants and funding sources to name a few. A common theme that ran through most of our interviews is that action is needed to prioritise the individual as well as thinking in terms of national- and community-level. To ensure the successful mitigation and adaptation to climate change, strategies need to come into place that protect the rights of the individual. This poses a global challenge, stretching from protecting the livelihoods of indigenous cultures and those impacted by sea level rise on low-lying islands, to supporting workers who rely on the non-renewable energy industry. In terms of climate research we need to ensure that we make our scientific conclusions accessible on an individual-level so that our work has a greater impact.

“a key goal for us is making climate change research accessible to the user community”

Clare Kapp, WMO Press Office Communications Leader.

3) Action is needed now, however the Paris Agreement only implies action post-2020.

Throughout our attendance in plenary meetings and side events there was an emphasis that whilst the Paris Agreement is an important stepping stone to combatting climate change, action is needed before 2020 for the Paris Agreement to be reached. Currently INDCs are proposed for between 2021-2030, however for the intended global temperature targets to be achieved it was argued that action is needed now. Although, pre-2020 action raises much contention, with the most popular argument against pre-2020 action being that more time and effort is needed for negotiations to ensure that a better understanding of national efforts to climate change mitigation is determined.

“We need to take action before 2020. Working for action post-2020 is not going to be enough. We need to start acting now.”

Honduras Party Representative.

“We need more time to work on the rule book for the Paris Agreement. Discussions on this should continue.”

Switzerland Party Representative.

4) There is a difference in opinion on whether 1.5°C can be reached.

For me the most interesting question we asked conference delegates was “do you think the target of 1.5°C can be reached?” This question brought a difference of opinion including some party members arguing that the change in our non-renewable energy dependence is far too great for the target to be achieved. Meanwhile, other political representatives and NGO delegates argued that accepting the target is unachievable before even trying makes negotiations and discussions less successful. There was also anticipation for the future IPCC report titled, Special Report on Global Warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways.

“Of course we want to fight for 1.5°C, why fight for 2°C? It just makes sense to fight for 1.5°C”

Martina Duncan, Party Representative for Grenada.

COP22 has been a fantastic opportunity for PhD students in our department to interact and understand the process that takes place during a UNFCCC conference. Whilst the past couple of weeks have been dominated by the results of the US election and the associated uncertainties, there has been an increasing global recognition of climate change and that action should be taken. In the next few years the challenge to mitigate and adapt towards climate change will be an increasing priority, and let us hope that these annual UNFCCC conferences are key stepping stones for climate change action.

“This is a problem people are recognising, and that it is time to change”

Jonathan Pershing, US Climate Envoy

Thank you all those who have supported our work at COP22 this year. Thank you to the Walker Institute, NERC SCENARIO doctoral training partnership and UNFCCC for this brilliant opportunity. Thank you to all those who have supported us with publicity including NERC, Royal Meteorological Society, members of staff and PhD students at the University of Reading and Lucy Wallace who has ensured the appropriate communication of our project. Plus a huge thanks to all delegates and staff at COP22 who volunteered their time to talk to us.

Air Pollution – The Cleaner Side of Climate Change?

Email: c.p.webber@pgr.reading.ac.uk

Air pollution is a major global problem, with the World Health Organisation recently linking 1 in 8 global deaths to this invisible problem. I say invisible, what air pollution may seem is an almost invisible problem. My PhD looks at some of the largest air pollutants, particulate matter PM10, which is still only 1/5th the width of a human hair in diameter!

My project looks at whether winter (December – February) UK PM10 concentration ([PM10]) exceedance events will change in frequency or composition in a future climate. To answer this question, a state of the art climate model is required. This model simulates the atmosphere only and is an iteration of the Met-Office HADGEM3 model. The climate simulation models a future 2050 under the RCP8.5 emissions scenario, the highest greenhouse-gas emission scenario considered in IPCC-AR5 (Riahi et al., 2011).

In an attempt to model PM10 in the climate model (a complex feat, currently tasked to the coupled UKCA model), we have idealised the problem, making the results much easier to understand. We have emitted chemically inert tracers in the model, which represent the key sources of PM10 throughout mainland Europe and the UK. The source regions identified were: West Poland, Po Valley, BENELUX and the UK. While the modelled tracers were shown to replicate observed PM10 well, albeit with inevitable sources of lost variability, they were primarily used to identify synoptic flow regimes influencing the UK. The motivation of this work is to determine whether the flow regimes that influence the UK during UK PM10 episodes, change in a future climate.

As we are unable to accurately replicate observed UK [PM10] within the model, we need to generate a proxy for UK [PM10] episodes. We chose to identify the synoptic meteorological conditions (synoptic scale ~ 1000 km) that result in UK air pollution episodes. We find that the phenomenon of atmospheric blocking in the winter months, in the Northeast Atlantic/ European region, provide the perfect conditions for PM10 accumulation in the UK. In the Northern Hemisphere winter, Rossby Wave Breaking (RWB) is the predominant precursor to atmospheric blocking (Woollings et al., 2008). RWB is the meridional overturning of air masses in the upper troposphere, so that warm/cold air is advected towards the pole/equator. The diagnostic chosen to detect RWB on is potential temperature (θ) on the potential vorticity = 2 Potential vorticity units surface, otherwise termed the dynamical tropopause. The advantages of using this diagnostic for detecting RWB have been outlined in this study’s first publication; Webber et al., (2016). Figure 1 illustrates this mechanism and the metric used to diagnose RWB, BI, introduced by Pelly and Hoskins (2003).

thumbnail_blog_post_fig1
Fig. 1 – A schematic of Rossby Wave Breaking, breaking in a clockwise (anticyclonic) direction. The black contour represents a θ contour on the 2PVU surface, otherwise termed the dynamical tropopause. The colour shading represents θ anomalies, with red/ blue being warm/cold θ anomalies. The metric used to identify RWB is shown as the BI metric and is the mean θ in the 15 degrees latitude to the north subtracted by that to the south of the centre of overturning (black dot).

In Fig. 1 warm air is transported to the north of cold air to the south. This mechanism generates an anticyclone to the north of the centre of overturning (black circle in Fig 1) and a cyclone to the south. If the anticyclone to north becomes quasi-stationary, a blocking anticyclone is formed, which has been shown to generate conditions favourable for the accumulation of PM10.

To determine whether there exists a change in RWB frequency, due to climate change (a climate increment), the difference in RWB frequency between two simulations must be taken. The first of these is a free-running present day simulation, which provides us with the models representation of a present day atmosphere. The second is a future time-slice simulation, representative of the year 2050. Figure 2 shows the difference between the two simulations, with positive values representing an increase in RWB frequency in a future climate. The black contoured region corresponds to the region where the occurrence of RWB significantly increases UK [PM10].

picture1
Fig 2. Climate increment in RWB frequency, with red/blue shading representing an increase/ decrease in RWB frequency in a future climate. The thick black contour represents the region where the occurrence of RWB significantly raises mean UK [PM10].
RWB frequency anomalies within the black contoured region are of most importance within this study. Predominantly the RWB frequency anomaly, within the black contour, can be described as a negative frequency anomaly. However, there also exist heterogeneous RWB frequency anomalies within the contoured region. What is shown is that there is a tendency for RWB to occur further north and eastward in a future climate. These shifts in the regions of RWB occurrence influence a shift in the resulting flow regimes that influence the UK.

Climate shifts in flow regimes were analysed, however only for the most prominent subset of RWB events. RWB can be subset into cyclonic and anti-cyclonic RWB (CRWB and ACRWB respectively) and both have quite different impacts on UK [PM10] (Webber et al., 2016).  ACRWB events are the most prominent RWB subset within the Northeast Atlantic/ European region (Weijenborg et al., 2012). Figure 1 represents ACRWB, with overturning occurring in a clockwise direction about the centre of overturning and these events were analysed for climate shifts in resultant flow regimes.

The analysis of climate flow regime shifts, provides the most interesting result of this study. We find that there exists a significant (p<0.05) increase in near European BENELUX tracer transport into the UK and a significant reduction of UK tracer accumulation, following ACRWB events. What we therefore see is that while in the future we see a reduction in the number of RWB and ACRWB events in a region most influential to UK [PM10], there also exists a robust shift in the resulting flow regime. Following ACRWB, there exists an increased tendency for the transport of European PM10 and decreased locally sourced [PM10] in the UK. Increased European transport may result in increased long-range transport of smaller and potentially more toxic (Gehring et al., 2013) PM2.5 particles from Europe.

References

Gehring, U., Gruzieva, O., Agius, R. M., Beelen, R., Custovic, A., Cyrys, J., Eeftens, M., Flexeder, C., Fuertes, E., Heinrich, J., Hoffmann, B., deJongste, J. C., Kerkhof, M., Klümper, C., Korek, M., Mölter, A., Schultz, E. S., Simpson, A.,Sugiri, D., Svartengren, M., von Berg, A., Wijga, A. H., Pershagen, G. and Brunekreef B.: Air Pollution Exposure and Lung Function in Children: The ESCAPE Project. Children’s Health Prespect, 121,
1357-1364, doi:10.1289/ehp.1306770 , 2013.

Pelly, J. L and Hoskins, B. J.: A New Perspective on Blocking. J. Atmos. Sci, 50, 743-755, doi: http://dx.doi.org/10.1175/1520- 0469(2003)060<0743:ANPOB>2.0.CO;2, 2003.

Riahi, K., Rao S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N. and Rafaj, P.: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, no. 1-2, 33-57, doi: 10.1007/s10584-011-0149-y, 2011.

Webber, C. P., Dacre, H. F., Collins, W. J., and Masato, G.: The Dynamical Impact of Rossby Wave Breaking upon UK PM10 Concentration. Atmos. Chem. and Phys. Discuss, doi; 10.5194/acp-2016-571, 2016.

Weijenborg, C., de Vries, H. and Haarsma, R. J.: On the direction of Rossby wave breaking in blocking. Climate Dynamics, 39, 2823- 2831, doi: 10.1007/s00382-012-1332-1, 2012.

Woollings, T. J., Hoskins, B. J., Blackburn, M. and Berrisford, P.: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci, 65, 609-626, doi: http://dx.doi.org/10.1175/2007JAS2347.1, 2008.