Sting Jet: the poisonous (and windy) tail of some of the most intense UK storms

Email: a.volonte@pgr.reading.ac.uk

IDL TIFF file
Figure 1: Windstorm Tini (12 Feb 2014) passes over the British Isles bringing extreme winds. A Sting Jet has been identified in the storm. Image courtesy of NASA Earth Observatory

It was the morning of 16th October when South East England got battered by the Great Storm of 1987. Extreme winds occurred, with gusts of 70 knots or more recorded continually for three or four consecutive hours and maximum gusts up to 100 knots. The damage was huge across the country with 15 million trees blown down and 18 fatalities.

case_study_great_storm_fig011
Figure 2: Surface wind gusts in the Great Storm of 1987. Image courtesy of UK Met Office.

The forecast issued on the evening of 15th October failed to identify the incoming hazard but forecasters were not to blame as the strongest winds were actually due to a phenomenon that had yet to be discovered at the time: the Sting Jet. A new topic of weather-related research had started: what was the cause of the exceptionally strong winds in the Great Storm?

It was in Reading at the beginning of 21st century that scientists came up with the first formal description of those winds, using observations and model simulations. Following the intuitions of Norwegian forecasters they used the term Sting Jet, the ‘sting at the end of the tail’. Using some imagination we can see the resemblance of the bent-back cloud head with a scorpion’s tail: strong winds coming out from its tip and descending towards the surface can then be seen as the poisonous sting at the end of the tail.

Conceptual+model+of+storm+development
Figure 3: Conceptual model of a sting-jet extratropical cyclone, from Clark et al, 2005. As the cloud head bends back and the cold front moves ahead we can see the Sting Jet exiting from the cloud tip and descending into the opening frontal fracture.  WJ: Warm conveyor belt. CJ: Cold conveyor belt. SJ: Sting jet.

In the last decade sting-jet research progressed steadily with observational, modelling and climatological studies confirming that the strong winds can occur relatively often, that they form in intense extratropical cyclones with a particular shape and are caused by an additional airstream that is neither related to the Cold nor to the Warm Conveyor Belt. The key questions are currently focused on the dynamics of Sting Jets: how do they form and accelerate?

Works recently published (and others about to come out, stay tuned!) claim that although the Sting Jet occurs in an area in which fairly strong winds would already be expected given the morphology of the storm, a further mechanism of acceleration is needed to take into account its full strength. In fact, it is the onset of mesoscale instabilities and the occurrence of evaporative cooling on the airstream that enhances its descent and acceleration, generating a focused intense jet (see references for more details). It is thus necessary a synergy between the general dynamics of the storm and the local processes in the cloud head in order to produce what we call the Sting Jet .

plot_3D_sj ccb_short
Figure 4: Sting Jet (green) and Cold Conveyor Belt (blue) in the simulations of Windstorm Tini. The animation shows how the onset of the strongest winds is related to the descent of the Sting Jet. For further details on this animation and on the analysis of Windstorm Tini see here.

References:

http://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/great-storm

Browning, K. A. (2004), The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Q.J.R. Meteorol. Soc., 130: 375–399. doi:10.1256/qj.02.143

Clark, P. A., K. A. Browning, and C. Wang (2005), The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Q.J.R. Meteorol. Soc., 131: 2263–2292. doi:10.1256/qj.04.36

Martínez-Alvarado, O., L.H. Baker, S.L. Gray, J. Methven, and R.S. Plant (2014), Distinguishing the Cold Conveyor Belt and Sting Jet Airstreams in an Intense Extratropical Cyclone. Mon. Wea. Rev., 142, 2571–2595, doi: 10.1175/MWR-D-13-00348.1.

Hart, N.G., S.L. Gray, and P.A. Clark, 0: Sting-jet windstorms over the North Atlantic: Climatology and contribution to extreme wind risk. J. Climate, 0, doi: 10.1175/JCLI-D-16-0791.1.

Volonté, A., P.A. Clark, S.L. Gray. The role of Mesoscale Instabilities in the Sting-Jet dynamics in Windstorm Tini. Poster presented at European Geosciences Union – General Assembly 2017, Dynamical Meteorology (General session)

The onset and end of wet seasons over Africa

Email: c.m.dunning@pgr.reading.ac.uk

For many Africans, the timing of the wet season is of crucial importance, especially for those reliant upon subsistence agriculture, who depend on the seasonal rains for crop irrigation. In addition, the wet season recharges lakes, rivers and water storage tanks which constitute the domestic water supply in some areas. The timing of the wet season also affects the availability of energy from hydroelectric schemes, and has impacts upon the prevalence of certain disease carrying vectors, such as mosquitoes.

Climate change is already threatening many vulnerable populations, and changes in the timing or intensity of the wet season, or increasing uncertainty in the timing of the onset, may lead to significant socio-economic impacts. But before we consider future projections or past changes in the seasonality, we need to go back a few steps.

The first step is to find a method for determining when the wet season starts and ends (its ‘onset’ and ‘cessation’). In order to look at large-scale shifts in the timing of the wet season and relate this to wider-scale drivers, this method needs to be applicable across the entirety of continental Africa. Most previous methods for determining the onset focus on the national to regional scale, and are dependent on the exceedance of a certain threshold e.g. the first week with at least 20mm of rainfall, with one rainfall event of more than 10mm, and no dry spell of more than 10 days after the rain event for the next month. While such definitions work well at a national scale they are not applicable at a continental scale where rainfall amounts vary substantially. A threshold suitable for the dry countries at the fringes of the Sahara would not be suitable in the wetter East African highlands.

In addition to a vast range of rainfall amounts, the African continent also spans multiple climatic regimes. The seasonal cycle of precipitation over continental Africa is largely driven by the seasonal progression of the ITCZ and associated rain belts, which follows the maximum incoming solar radiation. In the boreal summer, when the thermal equator sits between the equator and the Tropic of Cancer, the ITCZ sits north of the equator and West Africa and the Sahel experience a wet season. During the boreal autumn the ITCZ moves south, and southern Africa experiences a wet season during the austral summer, followed by the northward return of the ITCZ during the boreal spring. As a consequence of this, central African regions and the Horn of Africa experience two wet seasons per year – one as the ITCZ travels north, and a second as the ITCZ travels south. A method for determining the onset and cessation at the continental scale thus needs to account for regions with multiple wet seasons per year.

In our paper (available here) we propose such a method, based on the method of Liebmann et al (2012). The method has three steps:

  • Firstly, determine the number of seasons experienced per year at the location (or grid point) of interest. This is achieved using harmonic analysis – the amplitude of the first and second harmonic were computed, using the entire timeseries and their ratio compared. If the ratio was greater than 1.0, i.e. the amplitude of the second harmonic was greater than the amplitude of the first harmonic then the grid point was defined as having two wet seasons per year (biannual), if the ratio was less than one then it was defined as having an annual regime. Figure 1 shows the ratio for one African rainfall dataset (TARCATv2). Three regions are identified as biannual regions; the Horn of Africa, an equatorial strip extending from Gabon to Uganda and a small region on the southern West African coastline.

    blog_fig1
    Figure 1: Location of regions with one and two seasons per year, determined using harmonic analysis. Yellow indicates two seasons per year, while pink/purple indicates one season per year. Computed from TARCATv2 data.
  • Secondly the period of the year when the wet season occurs was determined. This was achieved by looking for minima and maxima in the climatological cumulative daily rainfall anomaly to identify one or two seasons.
  • The third and final stage is to calculate the onset and cessation dates for each year. This is done by looking for the minima and maxima in the cumulative daily rainfall anomaly, calculated for each season.

Figure 2 shows the seasonal progression of the onset and cessation, with the patterns observed in agreement with those expected from the driving physical mechanisms, and continuous progression across the annual/biannual boundaries. Over West Africa and the Sahel, Figure 2a-b shows zonally-contiguous progression patterns with onset following the onset of the long rains and moving north, and cessation moving southward, preceding the end of the short rains. Over southern Africa Figure 2c-d shows the onset over southern Africa starting in the north-west and south-east, following the onset of the short rains, reaching the East African coast last, and cessation starting at the Zimbabwe, Mozambique, South Africa border and spreading out radially into the cessation of the long rains.

As well as testing the method for compatibility with known physical drivers of African rainfall, agreement across multiple satellite-based rainfall estimates was also examined. In general, good agreement was found across the datasets, particularly for regions with an annual regime and over the biannual region of East Africa.

blog_fig2
Figure 2: Southward and northward progression of the onset and cessation across the annual/biannual boundaries, computed using GPCP daily rainfall data 1998-2013.

The advantage of having a method that works at the continental scale is the ability to look at the impact of large-scale oscillations on wider-scale variability. One application of this method was to investigate the impact of El Niño upon both the annual rains and short rains (Figure 3). In Figure 3 we see the well-documented dipole in rainfall anomaly, with higher rainfall totals over 0–15°S and the Horn of Africa in El Niño years and the opposite between 15°S and 30°S.  This anomaly is stronger when we use this method compared with using standard meteorological seasons. We can also see that while the lower rainfall to the south is colocated with later onset dates and a consequentially shorter season, the higher rainfall over the Horn of Africa is associated with later cessation of the short rains, with only small differences in onset date.

blog_fig3
Figure 3: a-c) Composite of onset, cessation and wet season rainfall in El Niño years for annual rains and short rains, minus the mean over 1982-2013, computed using CHIRPS data d) Oct-Feb rainfall anomaly in  years (CHIRPS).

In addition to using this method for research purposes, its application within an operational setting is also being explored. Hopefully, the method will be included within the Rainwatch platform, which will be able to provide users with a probabilistic estimate of whether or not the season has started, based on the rainfall experienced so far that year, and historical rainfall data.

For more details, please see the paper detailing this work:

Dunning, C.M., E Black, and R.P. Allan (2016) The onset and cessation of seasonal rainfall over Africa, Journal of Geophysical Research: Atmospheres, 121 11,405-11,424, doi: 10.1002/2016JD025428

References:

Liebmann, B., I. Bladé, G. N. Kiladis, L. M. Carvalho, G. B. Senay, D. Allured, S. Leroux, and C. Funk (2012), Seasonality of African precipitation from 1996 to 2009, J. Clim.25(12), 4304–4322.

Understanding our climate with tiny satellites

Gristey, J. J., J. C. Chiu, R. J. Gurney, S.-C. Han, and C. J. Morcrette (2017), Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD025514.

Email: J.Gristey@pgr.reading.ac.uk          Web: http://www.met.reading.ac.uk/~fn008822/

The surface of our planet has warmed at an unprecedented rate since the mid-19th century and there is no sign that the rate of warming is slowing down. The last three decades have all been successively warmer than any preceding decade since 1850, and 16 of the 17 warmest years on record have all occurred since 2001. The latest science now tells us that it is extremely likely that human influence has been the dominant cause of the observed warming1, mainly due to the release of carbon dioxide and other greenhouse gases into our atmosphere. These greenhouse gases trap heat energy that would otherwise escape to space, which disrupts the balance of energy flows at the top of the atmosphere (Fig. 1). The current value of the resulting energy imbalance is approximately 0.6 W m–2, which is more than 17 times larger than all of the energy consumed by humans2! In fact, observing the changes in these energy flows at the top of the atmosphere can help us to gauge how much the Earth is likely to warm in the future and, perhaps more importantly, observations with sufficient spatial coverage, frequency and accuracy can help us to understand the processes that are causing this warming.

fig1
Figure 1. The Earth’s top-of-atmosphere energy budget. In equilibrium, the incoming sunlight is balanced by the reflected sunlight and emitted heat energy. Greenhouse gases can reduce the emitted heat energy by trapping heat in the Earth system leading to an energy imbalance at the top of the atmosphere.

Observations of energy flows at the top of the atmosphere have traditionally been made by large and expensive satellites that may be similar in size to a large car3, making it impractical to launch multiple satellites at once. Although such observations have led to many advancements in climate science, the fundamental sampling restrictions from a limited number of satellites makes it impossible to fully resolve the variability in the energy flows at the top of atmosphere. Only recently, due to advancements in small satellite technology and sensor miniaturisation, has a novel, viable and sustainable sampling strategy from a constellation of satellites become possible. Importantly, a constellation of small satellites (Fig. 2a), each the size of a shoe-box (Fig. 2b), could provide both the spatial coverage and frequency of sampling to properly resolve the top of atmosphere energy flows for the first time. Despite the promise of the constellation approach, its scientific potential for measuring energy flows at the top of the atmosphere has not been fully explored.

fig2
Figure 2. (a) A constellation of 36 small satellites orbiting the Earth. (b) One of the small “CubeSat” satellites hosting a miniaturised radiation sensor that could be used [edited from earthzine article].
To explore this potential, several experiments have been performed that simulate measurements from the theoretical constellation of satellites shown in Fig 2a. The results show that just 1 hour of measurements can be used to reconstruct accurate global maps of reflected sunlight and emitted heat energy (Fig. 3). These maps are reconstructed using a series of mathematical functions known as “spherical harmonics”, which extract the information from overlapping samples to enhance the spatial resolution by around a factor of 6 when compared with individual measurement footprints. After producing these maps every hour during one day, the uncertainty in the global-average hourly energy flows is 0.16 ± 0.45 W m–2 for reflected sunlight and 0.13 ± 0.15 W m–2 for emitted heat energy. Observations with these uncertainties would be capable of determining the sign of the 0.6 W m–2 energy imbalance directly from space4, even at very short timescales.

fig3
Figure 3. (top) “Truth” and (bottom) recovered enhanced-resolution maps of top of atmosphere energy flows for (left) reflected sunlight and (right) emitted heat energy, valid for 00-01 UTC on 29th August 2010.

Also investigated are potential issues that could restrict similar uncertainties being achieved in reality such as instrument calibration and a reduced number of satellites due to limited resources. Not surprisingly, the success of the approach will rely on calibration that ensures low systematic instrument biases, and on a sufficient number of satellites that ensures dense hourly sampling of the globe. Development and demonstration of miniaturised satellites and sensors is currently underway to ensure these criteria are met. Provided good calibration and sufficient satellites, this study demonstrates that the constellation concept would enable an unprecedented sampling capability and has a clear potential for improving observations of Earth’s energy flows.

This work was supported by the NERC SCENARIO DTP grant NE/L002566/1 and co-sponsored by the Met Office.

Notes:

1 This statement is quoted from the latest Intergovernmental Panel on Climate Change assessment report. Note that these reports are produced approximately every 5 years and the statements concerning human influence on the climate have increased in confidence in every report.

2 Total energy consumed by humans in 2014 was 13805 Mtoe = 160552.15 TWh. This is an average power consumption of 160552.15 TWh  / 8760 hours in a year = 18.33 TW

Rate of energy imbalance per square metre at top of atmosphere is = 0.6 W m–2. Surface area of “top of atmosphere” at 80 km is 4 * pi * ((6371+80)*103 m)2 = 5.23*1014 m2. Rate of energy imbalance for entire Earth = 0.6 W m–2 * 5.23*1014 m2 = 3.14*1014 W = 314 TW

Multiples of energy consumed by humans = 314 TW / 18.33 TW = 17

3 The satellites currently carrying instruments that observe the top of atmosphere energy flows (eg. MeteoSat 8, Aqua) will typically also be hosting a suite of other instruments, which adds to the size of the satellite. However, even the individual instruments are still much larger that the satellite shown in Fig. 2b.

4 Currently, the single most accurate way to determine the top-of-atmosphere energy imbalance is to infer it from changes in ocean heat uptake. The reasoning is that the oceans contain over 90% of the heat capacity of the climate system, so it is assumed on multi-year time scales that excess energy accumulating at the top of the atmosphere goes into heating the oceans. The stated value of 0.6 W m–2 is calculated from a combination of ocean heat uptake and satellite observations.

References:

Allan et al. (2014), Changes in global net radiative imbalance 1985–2012, Geophys. Res. Lett., 41, 5588–5597, doi:10.1002/2014GL060962.

Barnhart et al. (2009), Satellite miniaturization techniques for space sensor networks, Journal of Spacecraft and Rockets46(2), 469–472, doi:10.2514/1.41639.

IPCC (2013), Climate Change 2013: The Physical Science Basis, available online at https://www.ipcc.ch/report/ar5/wg1/.

NASA (2016), NASA, NOAA Data Show 2016 Warmest Year on Record Globally, available online at https://www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally.

Sandau et al. (2010), Small satellites for global coverage: Potential and limits, ISPRS J. Photogramm., 65, 492–504, doi:10.1016/j.isprsjprs.2010.09.003.

Swartz et al. (2013), Measuring Earth’s Radiation Imbalance with RAVAN: A CubeSat Mission to Measure the Driver of Global Climate Change, available online at https://earthzine.org/2013/12/02/measuring-earths-radiation-imbalance-with-ravan-a-cubesat-mission-to-measure-the-driver-of-global-climate-change/.

Swartz et al. (2016), The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat Mission: A Pathfinder for a New Measurement of Earth’s Radiation Budget. Proceedings of the AIAA/USU Conference on Small Satellites, SSC16-XII-03